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q-extensionof Wielandt’sTheorem
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B.P.1018 Maa“ mora, Ke¤ nitra14000, Maroc

Communicatedby LucioTavernini

(Received 25March 2000; Revised 20 September 2000)

It is well known that the q-Gamma function cannot be characterised by its functional equation �qðzþ 1Þ ¼
ðð1� qzÞ=ð1� qÞÞ�qðzÞ and the condition �qð1Þ ¼ 1. In 1980 Richard Askey showed in [1] that the additional
assumption of logarithmic convexity yields the uniqueness of �qðxÞ for real x > 0. The goal of this note is to
establish a q-extension of Wielandt’s theorem which gives a characterization of �qðzÞ for all
z 2 fz 2 C : ReðzÞ > 0g.

Keywords: q-Gamma function; Holomorphic functions

AMS Subject Classification: 33B15

1 THE FUNCTIONAL EQUATION

We consider a holomorphic function f in the half plane A :¼ fz 2 C:ReðzÞ > 0g satisfy-
ing the equation:

f ðzþ 1Þ ¼
1� qz

1� q
f ðzÞ for all z 2 A ð1:1Þ

Throughout this note q belonging in 	0, 1½.
By induction we obtain for all n 2 N and all points z 2 A

f ðzþ nþ 1Þ ¼ ðzÞqðzþ 1Þqðzþ 2Þq � � � ðzþ nÞq f ðzÞ ð1:2Þ

where ðzþ nÞq ¼ ð1� qzþnÞ=ð1� qÞ
Now it is easily shown that: Every function f holomorphic in A and satisfying

(1) admits a meromorphic extension f̂f to C. This function f̂f is holomorphic in
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C � f0, � 1, � 2, . . .g; the point �n is a pole of order � 1 with residue

ð�1Þn

ðnÞq!
qnðnþ1Þ=2 q� 1

log q
f ð1Þ ð1:3Þ

where ðnÞq! ¼ ðnÞqðn� 1Þq � � � ð1Þq and ðnÞq ¼ ð1� qnÞ=ð1� qÞ 8n 2 N.
In particular f̂f is an entire function if and only if f ð1Þ ¼ 0.

Proof Take a point z 2 C such that �z =2N. Then ẑz :¼ zþ nþ 1 2 A for large n 2 N

and we may define the function f̂f given by:

f̂f ðzÞ :¼
f ðẑzÞ

ðzÞqðzþ 1Þq � � � ðzþ nÞq

Clearly this function is independant of the choice of n and we get a holomorphic
function f̂f in C � f0, � 1, � 2, . . .g such that f̂f=A ¼ f . Furthermore

lim
z�!�n

ðzþ nÞ f̂f ðzÞ ¼
ð�1Þn

ðnÞq!
qnðnþ1Þ=2 q� 1

log q
f ð1Þ for all n 2 N

This shows that �n is a pole of f̂f of order � 1 with residue

ð�1Þn

ðnÞq!
qnðnþ1Þ=2 q� 1

log q
f ð1Þ

2 q-JACKSON’S FUNCTION

Our point of departure is the Jackson’s function �q given by:

�qðzÞ ¼
ðq, qÞ1
ðqz, qÞ1

ð1� qÞ1�z ð2:1Þ

with 0 < q < 1 and ðz, qÞ1 ¼
Q

k�0ð1� zqkÞ
It is known that the q-Gamma function has the following properties:

. �qðzÞ is holomorphic in A

. �qðzÞ verified the functional equation given by

Fðzþ 1Þ ¼ ðzÞqFðzÞ for all z 2 A and Fð1Þ ¼ 1 ð2:2Þ

. Furthermore the inequations:

jð1� qÞ1�zj ¼ ð1� qÞ1�<z
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and

jð1� qkþzÞj � 1� qkþ<z

entails directly

j�qðzÞj � j�qð<zÞj for all z 2 A

In particular �qðzÞ is bounded in every strip fz 2 C: a � <z � bg: with 0 < a < b < þ1.

3 THE MAIN RESULT

The main result of this note is given by the following theorem.

3.1 q-extension of Wielandt’s Theorem

Let FðzÞ be a holomorphic function in the right half plane A having the following two
properties:

(a) Fðzþ 1Þ ¼ ðzÞqFðzÞ for all z 2 A
(b) FðzÞ is bounded in the strip Sq :¼ fz 2 C: 2� q < <z < 1þ qg if 1

2 < q < 1
ðrespectively in the strip Sq :¼ fz 2 C: 1þ q < <z < 2� qg if 0 < q < 1

2Þ:

Then:

FðzÞ ¼ ��qðzÞ in A with � ¼ Fð1Þ

Proof Without loss of generality, one can assume that q 2 	 12 , 1½.

The function f :¼ F � ��q is holomorphic in A. From (a) we obtain:

f ðzþ 1Þ ¼ ðzÞq f ðzÞ for all z 2 A

We have f ð1Þ ¼ 0, we conclude from (1.3) that f extends to an entire function f̂f .
As the function �q restricted to Sq is bounded by (2.3) and the function f=Sq is bounded
by (b), thus f is bounded on Sq: This implies boundedness of f on S 0

q :¼
fz 2 C: 1� q � <z < qg. In fact, let z 2 S 0

q . Then zþ 1 2 Sq; as f is bounded in Sq
and f ðzþ 1Þ ¼ ðzÞq f ðzÞ. We deduce that: f is bounded in S 0

q .

We now consider the entire function denoted by s given by the following expression:

sðzÞ ¼ qzð1�zÞ=2 f̂f ðzÞ f̂f ð1� zÞ

Since f̂f ðzÞ and f̂f ð1� zÞ take the same values on S 0
q and that the expression qzð1� zÞ=2 is

bounded on S 0
q . Then the function s is bounded on S 0

q .
On one hand let’s consider now the strip � :¼ fz 2 C: 12 � <z � 3

2g:. Then the function
s verified the following properties given by the below assertion.
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Assertion:

. s is an entire function

. sðzþ 1Þ ¼ �sðzÞ 8z 2 C

. s has no essential singularity on @� the boundary of �.

We will only show the last point of the above assertion. In fact: If we suppose that the
point a of @� is an essential singularity of s. Then by application of the Sohotsky’s the-
orem [3, pp. 133–134], there is a sequence zn ! a such sðznÞ ! 1: Absurd, since s is
bounded on S 0

q and Sq.

Remark 1 We can show the last point of the above assertion by application of the ‘‘big
Picard theorem’’ [5, p. 332] which merely asserts that the image of every neighborhood
of a is dense in the plane if the function has an essential singularity at a.

On the other hand, following [4, p. 678], as s is an entire function verified the above
assertion, s has the following form:

sðzÞ ¼ ei�zPðe2i�zÞ where PðXÞ 2 X�m
C½X 	 for some m 2 N ð�Þ

Then we assert that, by application of the Phragmen–Lindelof principle, s is bounded in
� :¼ fz 2 C: 12 � <z � 3

2g:

In fact: s is holomorphic in � and bounded on @� the boundary of �; since s is
bounded in S0

q and Sq.
Put: ’ðzÞ ¼ ez

2

, we can easily verified that ’ðzÞ is holomorphic and bounded in �.
Furhtermore; from (�) we show that:

sðzÞjj’ðzÞ
�� ��	! 0

as z ! 1 in �; for all 	 > 0:
Indeed: let’s suppose that the entire function s has the following form:

sðzÞ ¼ ei�ze�2mi�z a0e
2ni�z þ a1e

2ðn�1Þi�z þ � � � þ an
� �

where ai 2 C for 0 � i � n and n 2 N: Then, it’s easy to show the following inequality:

jsðzÞj � Með2m�1Þ�y e�2n�y þ e�2ðn�1Þ�y þ � � � þ 1	
�

where z ¼ xþ iy and M ¼ maxfai: 0 � i � ng: Subsequent we obtain:

sðzÞjj’ðzÞ
�� ��	� Með2m�1Þ�y e2n�y þ e2ðn�1Þ�y þ � � � þ 1

� �
eð9=4�y

2Þ	

for all z ¼ xþ iy 2 � and 	 > 0:
As, we have:

Með2m�1Þ�y e2n�y þ e2ðn�1Þ�y þ � � � þ 1
� �

eð9=4�y
2Þ	 ! 0

when z ! 1 in �; for all 	 > 0: Therefore the result follows. Thus, by application of
the Phragmén–Lindelof principle, s is bounded in �.
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It finally follows that the entire function s is bounded in C and hence constant by
Liouville’s theorem.

Then we get:

sðzÞ ¼ sð1Þ

This implies

f̂f ðzÞ ¼ 0

Therefore, we conclude that:

FðzÞ ¼ ��qðzÞ in A with � ¼ Fð1Þ:

Remark 2 When q tend 1� we obtain the classical Wielandt’s theorem [2].
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